

1. Понятие регуляции физиологических процессов

• Регуляция физиологических процессов — это совокупность механизмов, обеспечивающих согласованное функционирование органов, тканей и клеток растения для поддержания жизнедеятельности, роста, развития и адаптации к условиям среды.

Основные уровни регуляции:

Молекулярный уровень – регуляция синтеза белков, ферментов, нуклеиновых кислот.

Клеточный уровень – регуляция обмена веществ и транспорта веществ через мембраны.

Органный уровень – взаимодействие корней, стеблей, листьев, цветков и плодов.

Организменный уровень – интеграция всех органов через гормональные сигналы и обмен веществ.

Экологический уровень – влияние факторов внешней среды (свет, температура, вода, минеральное питание).

2. Основные механизмы регуляции

Физиологическая саморегуляция — изменение активности ферментов, осмотического давления, тургора клеток.

Гормональная регуляция — действие фитогормонов, которые контролируют рост, деление клеток, цветение, плодоношение.

Регуляция светом (фотоморфогенез) — влияние спектра и длительности освещения на рост и развитие.

Регуляция водой и минеральным питанием — определяет интенсивность фотосинтеза, транспирации, метаболизма.

Генетическая регуляция — наследственная программа развития, закодированная в генах растения.

• Рост и развитие – наиболее сложные процессы в жизнедеятельности организма. Они непосредственно связаны с питанием, водным режимом, транспортом веществ, двигательной активностью, механизмами коррелятивных взаимодействий всех частей целого растения

- Для роста нужны строительные материалы и вещества, регулирующие этот процесс. В качестве них используются питательные вещества, поступающие в клетку извне, а также находящиеся в ней запасные вещества.
- Для роста необходимо наличие специальных веществ регуляторов: гормонов, витаминов и др.

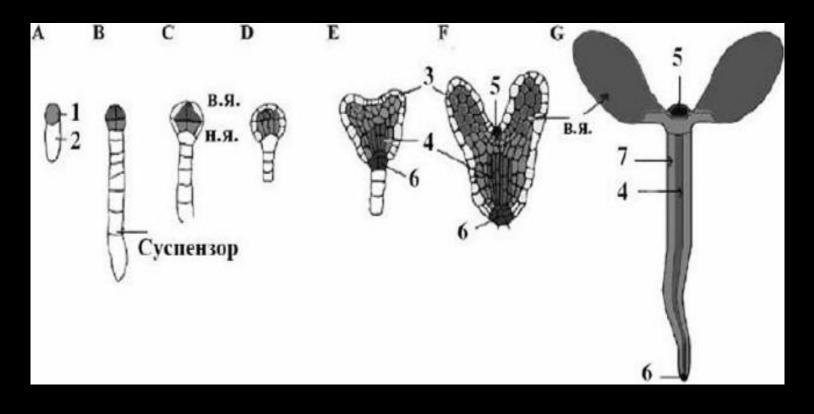
Основой роста является образование новых клеток и их рост, сопровождаемые их дифференциацией.

еще со времени ю. Оакса рост клеток принято делить на три фазы.
эмбриональную;
растяжения;
дифференцировки.

Если прежде считалось, что процесс деления клетки происходит лишь на эмбриональной фазе роста, то сейчас доказано, что клетки могут иногда делиться и на фазе растяжения.

• Развитие – это качественные изменения структуры и функциональной активности растения и его частей (органов, тканей, клеток) в процессе онтогенеза. Возникновение качественных различий между клетками, тканями и органами получило название дифференцировки. В понятие «развитие» входят также и возрастные изменения.

Развитие высших растений подразделяют на четыре возрастных этапа:


эмбриональный;

ювенильный;

репродуктивный (зрелость);

старость.

Эмбриональный этап онтогенеза семенных растений – развитие зародыша от зиготы до созревания семени включительно.

Эмбриональное происхождение структур (органов и тканей) проростков А. thaliana (модифицировано по Capron et al., 2009): І - терминальная клетка; 2 - базальная клетка; 3 - эпидермис; 4 - сосудистые ткани; 5 - апекс побега; 6 - дистальная часть меристемы корня; 7 - основные ткани, апикально-базальная ось - потомки клеток верхнего (в.я.) и нижнего ярусов (н.я.)

Ювенильный этап

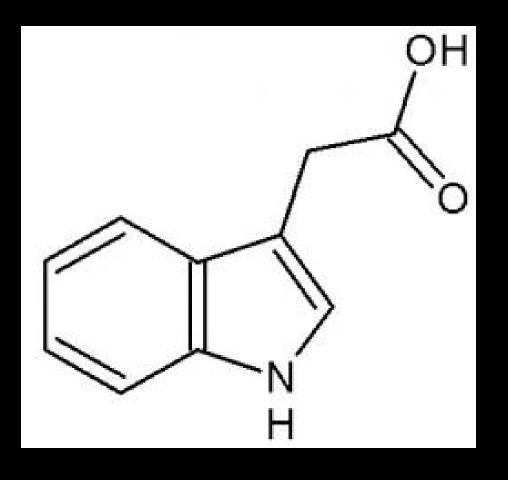
• – этап молодости – включает прорастание семян или органов вегетативного размножения и характеризуется накоплением вегетативной массы. Растения в этот период, как правило, не способны к половому размножению.

Репродуктивный этап

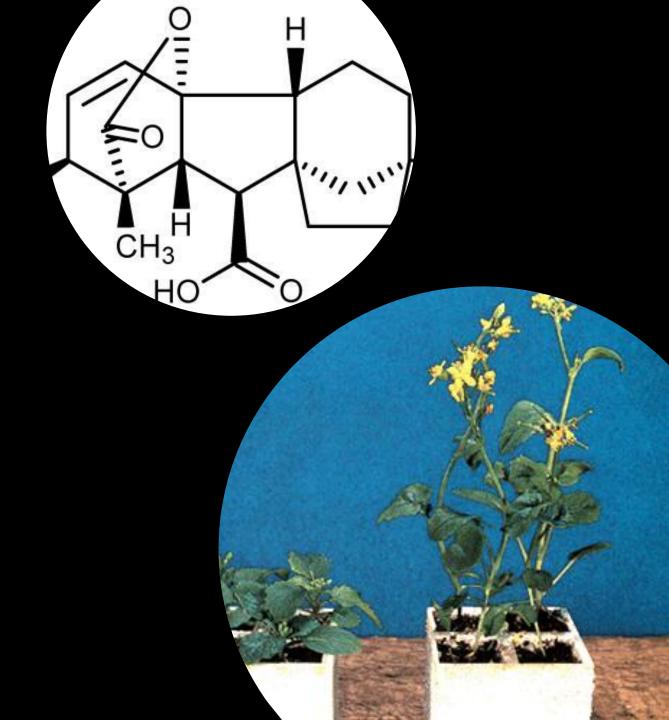
 - этап зрелости и размножения – характеризуется готовностью к зацветанию, заложением репродуктивных органов (цветков, органов вегетативного размножения), их ростом и развитием, формированием семян и плодов.

Этап старости и отмирания

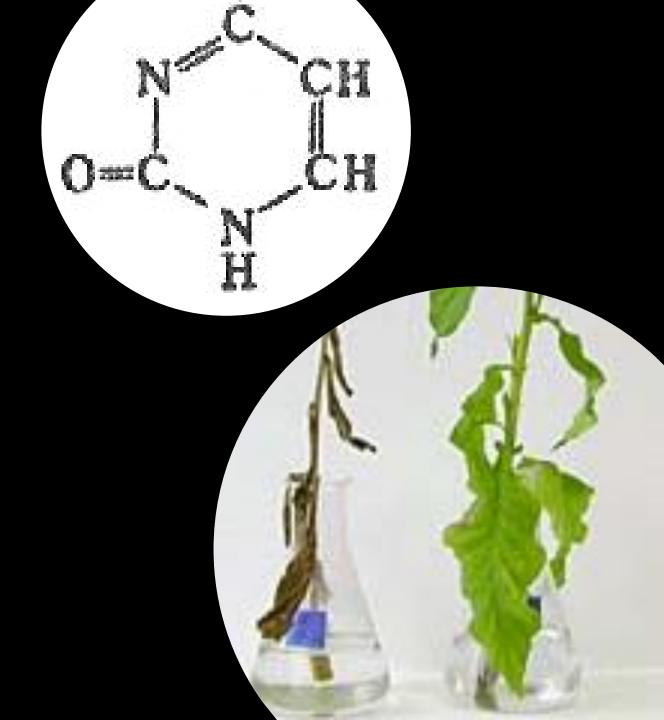
- период от полного прекращения плодоношения до естественной смерти организма.
- Каждый из этих этапов включает, как правило, несколько фаз, закономерно следующих друг за другом.


4. Основные фитогормоны и их роль

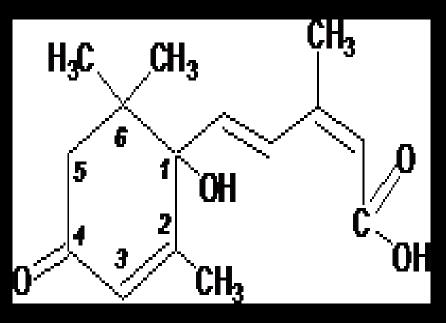
Фитогормон	Основная функция
Ауксины	Стимулируют рост клеток, образование корней, апикальное доминирование
Гиббереллины	Ускоряют рост побегов, прорастание семян, цветение
Цитокинины	Стимулируют деление клеток, задерживают старение листьев
Абсцизовая кислота (АБК)	Тормозит рост, регулирует покой семян, закрытие устьиц
Этилен	Ускоряет созревание плодов, способствует опадению листьев
Брассиностероиды	Усиливают рост клеток, повышают устойчивость к стрессам


• **Ауксины** — соединения преимущественно индольной природы: индолилуксусная кислота и ее производные.

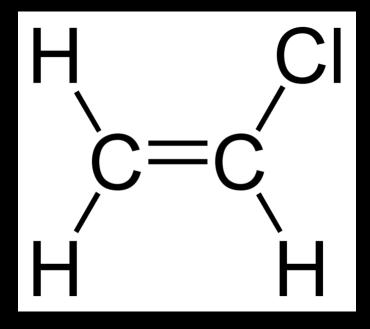
• Ауксин образуется в апикальных меристемах



• Гиббереллины ускоряют рост стебля, в меньшей степени – корня за счет, как деления, так и растяжения, прерывают период покоя у семян, клубней и луковиц, индуцируют цветение длиннодневных растений при коротком дне, стимулируют прорастание пыльцы, оказывают действие на биосинтез ферментов.



• **Цитокинины** – производные 6-аминопурина, синтезируются главным образом в меристеме корня, участвуют в регуляции обмена веществ в надземных органах, индуцируют в присутствии ауксина деление клеток.


Абсцизовая кислота накапливается осенью в семенах и почках, индуцирует их переход в период покоя и увеличивает его продолжительность, ускоряет образование отделительного слоя при опадении листьев, тормозит рост отрезков стеблей и колеоптилей.

Этилен — содержится в различных органах растений, способствует замедлению роста, ускорению старения клеток, созреванию и опадению плодов.

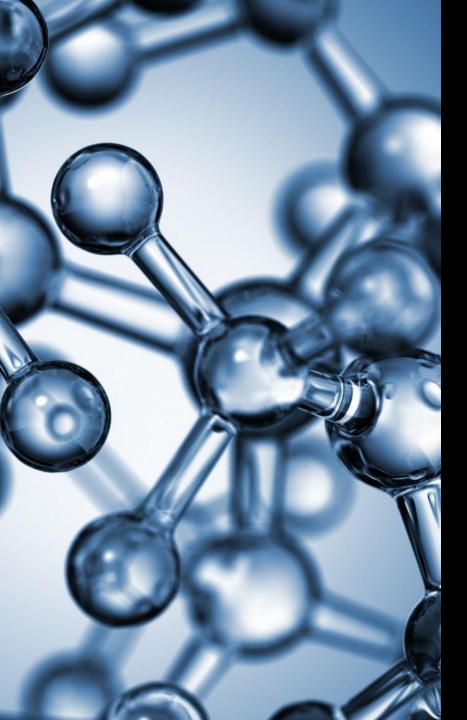
Брассинолид, наиболее изученный брассиностероид, обладает следующими свойствами:

Стимуляция роста. Брассинолид способствует делению и растяжению клеток, что ведёт к общему увеличению размеров растения.

Увеличение устойчивости к стрессам. Этот гормон помогает растениям противостоять неблагоприятным условиям окружающей среды: засухам, солёности почвы и экстремальным температурам.

Оптимизация процессов фотосинтеза. Брассинолид увеличивает производство хлорофилла, что улучшает эффективность фотосинтетической активности и ведёт к повышению продуктивности растений.

Увеличение корневой массы. Корни растений становятся более активными и растут вглубь почвы, что позволяет усваивать больше питательных веществ и влаги.


Повышение иммунного статуса. Брассинолид улучшает приспособляемость растений за счёт более полной реализации резервов генома, что обеспечивает гармоничный рост и развитие на всех стадиях.

ВАЖНЫЕ ИССЛЕДОВАНИЯ ДЕЙСТВИЯ БРАССИНОСТЕРОИДОВ

Исследование устойчивости томатов к солевому стрессу. Одно из значимых исследований, проведенное в 2000-х годах, показало, что применение брассиностероидов на томатах, выращиваемых в условиях солевого стресса, значительно увеличило их устойчивость и повысило урожай на 20%.

Исследование, опубликованное в журнале Plant Biology в 2019 году, продемонстрировало, что обработка растений риса брассиностероидами увеличила их устойчивость к засухе и повысила урожайность на 15–20%.

Повышение устойчивости огурцов к болезням. В 2009 году исследование, проведённое китайскими учеными, показало, что применение брассиностероидов снижает заболеваемость огурцов фитофторозом и другими грибковыми инфекциями, улучшая их общее состояние, здоровье и урожайность.

5. Влияние факторов внешней среды

Свет – регулирует фотосинтез, фотопериодизм и фототропизм.

Температура – влияет на скорость метаболизма и процессы цветения (яровизация).

Вода – необходима для тургора, транспирации, метаболизма.

Минеральное питание – определяет биосинтез органических веществ.

Гравитация и механические раздражители – вызывают геотропизм и тигмотропизм.